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ABSTRACT 
A shape design sensitivity analysis (SDSA) of two-dimensional transient heat diffusion problems is proposed 
based on the BIE formulation. The adjoint variable method is used by using the Ionescu-Cazimir integral 
identity. The procedure is checked against the analytical solution in the case of a rod example, and by 
numerical comparisons with the finite differencing for a rectangular block under thermal shock and a 
plunger model. An optimal design problem is then formulated for the plunger and solved to obtain a 
realistic shape. 
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INTRODUCTION 

The boundary element method (BEM) has been an attractive technique in many shape design 
sensitivity analyses (SDSAs) due to the accuracy on the boundary and the reduced number of 
unknowns. Choi and Kwak 1 - 3 have developed a general procedure for obtaining a shape 
sensitivity expression with the material derivative concept and adjoint variable method using 
the boundary integral equation formulation and applied it to two-dimensional potential and 
elasticity problems. The direct differentiation approach was proposed by Barone and Yang4,5 

for two- and three-dimensional elasticity problems. Choi and Choi6 also presented the direct 
differentiation method for SDSA, in which they utilized the derivative of a boundary integral 
identity (BII) derived previously for the adjoint variable, and Choi and Kwak7 proposed a unified 
approach for adjoint and direct method of SDSA. 

Although considerable attention is focused on design sensitivity analysis in the fields of solids 
and structural mechanics, relatively little work is done on thermal problems. Haftka8 proposed 
a design sensitivity analysis technique applicable to discretized system equations in finite elements 
for a steady state and a transient thermal problem. Park and Yoo9 used a variational formulation 
to study SDSA for a steady state conduction problem using an adjoint system and equivalent 
BIE. Dems10 derived first- and second-order sensitivities for a transient thermal problem using 
the adjoint load method and the direct differentiation. Meric11 derived shape sensitivity formulae 
of thermoelastic problem using the adjoint approach based on the Lagrange multiplier. He used 
BEM as an analysis tool. Extending the method of Dems and Meric and using a mixed mutual 
energy functional, Tortorelli and Harber12,13 presented a design sensitivity formula for transient 
heat conduction problems. They used FEM to perform the sensitivity calculation of an example, 
but no optimization was tried. 
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Saigal and Chandra14 developed a BEM formulation to determine design sensitivities for a 
steady state thermal problem through an implicit differentiation of discretized boundary integral 
equation. Kane et al.15 employed a similar implicit differentiation and the particular integral 
technique to derive a pure boundary sensitivity formula that includes the rates of change of 
either steady or transient thermal response, and Kane and Wang16 presented the shape design 
sensitivity formulation for nonlinear thermal problem using the implicit differentiation method. 
Recently Lee and Kwak17, 18 have extended the adjoint variable method of Choi and Kwak to 
two-dimensional and axisymmetric thermoelasticity problems and dealt with some numerical 
examples. Transient thermal problems are not yet studied in the frame of the boundary integral 
equation formulation. 

In this paper, a SDSA formulation of transient thermal problems is developed using the 
material derivative concept and the adjoint variable method. An integral identity which represents 
a reciprocity of two arbitrary thermal systems is used to compose the adjoint systems. A general 
performance functional of domain and boundary integrals defined over a fixed time interval is 
considered for SDSA. A rod problem with analytic expressions is introduced to show the 
procedure of SDSA. Several numerical sensitivities calculated by the present method are compared 
with those by finite difference approach. The SDSA capability is then linked to a numerical 
optimization algorithm to find the optimum shape of a simplified plunger used in the glass 
forming of a TV bulb panel. 

BOUNDARY INTEGRAL EQUATIONS 

Consider a two-dimensional transient thermal problem for an isotropic and homogeneous solid 
body Ω of an arbitrary shape with a sufficiently smooth boundary Г shown in Figure 1. The 
governing differential equations of the transient heat diffusion problem are written as: 

where T is the temperature, qi the ith component of the heat flux vector, t the time, Q the heat 
source intensity and k, p and Cε denote the conductivity, the mass density and the specific heat 
at constant deformation, respectively. In this paper, the Einstein summation convention is used 
with the indices ranging from 1 to 2. The boundary conditions on the boundary Г = ГT + Гq + Гc 
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are given as: 

where n denotes the outward normal and q the normal heat flux. For the boundary conditions, 
temperature x, t) is prescribed on ГT, normal heat flux (x, t) on Гq, and heat transfer coefficient 
h(x, t) and surrounding temperature Tx on Гc. Since (1) is time-dependent, the initial 
conditions at t = t0 must be prescribed as: 

T(x,t0) = T0(x) xєΩ (3) 

where T0 is a known initial temperature. 
Using the weighted residual method with the time dependent fundamental solution, the 

parabolic differential (1) together with (2) and (3) can be transformed into an integral equation 
formulation as follows19, 20: 

where c(xo) is the geometry-dependent quantity and K = k/ρCε, θ* and ω* are the diffusivity 
and the fundamental solutions, respectively. Here the fundamental solution θ* and ω* are of 
the form19, 20: 

where d is the dimensionality, r = |x — xo| is the Euclidian distance between the source point 
xo and the field point x and v(x) is the unit step function, i.e. v(.v) = 0 for x < 0 and v(x) = 1 
for x ≥ 0. Here the initial time is set to zero for brevity. Now an integral representation for the 
solutions of the heat diffusion equations is obtained. Discretizing (4) with a time integration 
process and applying the boundary conditions and the initial conditions, the histories of the 
state variables of the problems can be obtained19, 20. 

While (4) is the direct BIE, one can obtain another integral equation by considering relations 
of arbitrary two thermal systems. An appropriate relation can be found in Ionescu-Cazimir's 
reciprocal theorem21, 22, which correlates two independent coupled thermoelastic states in terms 
of displacement, traction, temperature, heat flux, mechanical body force and heat source. Ignoring 
the coupled terms, the reciprocal theorem with zero initial conditions can be rewritten as: 

where [T, q, Q] and [T*, q*, Q*] are the states of any two independent thermal systems. The 
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symbol indicates a Riemann convolution integral where, for example, 

The integral identity (6) holds for any two systems which satisfy the governing equations. This 
integral identity will be utilized in the shape design sensitivity analysis of the transient thermal 
system. 

SHAPE DESIGN SENSITIVITY ANALYSIS 

Consider a general performance functional of the following form: 

Φ = ξ(T(x, t),qi(x, t))dΩdt + ξ(T(x, t),q(x, t))dГdt (8) 

Using the material derivative concept1, the variation of T is expressed as: 
T= T' + T,jVj (9) 

where the superscript' means the partial derivative with respect to design and V means the 
design velocity as used in Reference 23. Decomposing the design velocity field on the boundary 
into the normal and tangential components, some relations are obtained as2,17: 

Vi = Vnni + Vssi (10) 
Vk,k - Vi,jninj = VnH + Vs,s (11) 

where ni and si are the unit normal and tangential vector component of the boundary, respectively 
and H is the curvature of the boundary. Here, subscript s after a comma means differentiation 
in the tangential direction on the boundary. Taking the material derivative to the functional, Φ, 
with the design velocity V, 

Note that the time is independent of the design changes. Expanding ξ and ζ with their arguments 
and using the integration by parts, (12) can be rewritten as: 

The purpose of sensitivity analysis is to explicitly express and in terms of design velocity, 
V, or shape variation. To this end adjoint systems are introduced in conjunction with (6). Before 
taking the material derivative of (6), some formulae are introduced as follows: 

= (VsH - Vn,s)si (14) 
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where <.> denotes a jump term, which appears from the integration by parts through a 
discontinuous point6. Since the state (T*', q*(T*'), Q*'), with partial derivatives also satisfies the 
governing differential equations, the integral identity of (6) is applicable as follows: 

Using (14)-(19) and some simplifications, one can obtain the variation of the integral identity 
as follows: 

Comparing (20) with (13) for eliminating and we can introduce an adjoint system as: 

where t є [0, tF]. Substituting (2) and (22)-(25) into (20) and (13), respectively, the desired sensitivity 
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formula in terms of V can be obtained as follows: 

In this expression, the time histories of primary and adjoint variables being obtained, Φ' can be 
evaluated easily by standard Guassian quadrature. Note that the adjoint systems introduced 
have the same governing equations as the primal system. Hence we need not calculate the system 
matrices of the adjoint system. However, it is evident from (22)-(25) that the primal and adjoint 
systems cannot be solved simultaneously because the primal variables must be known for the 
boundary conditions and the source intensity of the adjoint systems from the final time in reverse 
order. 

As an analytical example, consider a rod of length l with the initial temperature of 0°C. The 
temperature at one end, x = 0 is suddenly changed to T= T1 while at the other end x = l is 
kept zero. The transient heat conduction without heat loss from its surface is considered with 
the following temperature functional, 

Φ = T(x0, t0) = T(x, t)δ(x - xo)δ(t - t0)dxdt (27) 

where 0 < x0 < l, 0 < t0 < tF. The point x0 is moving to x0τ = x0 + ΤV(x) where Τ is a time-like 
parameter1 and t0 fixed. Considering rod length l as a design variable, V(0) = 0 and V(l) = δl. 
In the domain, it is possible to select V(x) = x5l/l(0 ≤ x ≤ l); that is, points on the rod move to 
the right proportionally. The analytic solution of the temperature is24: 

If the design sensitivity of the temperature point x0 = 1/2 is desired, since x0 moves to 
xoτ = x0 + τV(X) = (l + τδl)/2, from (27) and (28): 

Taking the variation of the temperature functional of (29) with respect to Τ and evaluating the 
result at Τ = 0: 

If the present method is used, taking the material derivative of (27): 

Φ' = (x, t)δ(x - x0)δ(t -t0)dxdt (31) 

Consider the following adjoint system: 
Q*(x, t) = -δ(x - xo)δ(t - (tF - t0)) 
T*(x, t) = 0, x = 0, l (32) 
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Substituting (32) into (6) and taking the material derivative of the resulting equation, one obtains: 

Comparing (33) and (31), one can finally obtain the sensitivity formula as: 

Substituting (32) and the design velocity expression into (34), one can obtain the sensitivity of 
Φ, the same as the exact expression (30). 

NUMERICAL EXAMPLES AND DISCUSSIONS 

For illustrating the validity of the shape design sensitivity formulations, two numerical examples 
are taken. The first example is a rectangular block under a thermal shock at time zero and 
another one is a plunger being used in forming a TV bulb. To obtain the solutions of the primal 
and the adjoint systems appearing in the sensitivity expression using the BEM, the discretization 
of (4) is necessary along both the boundary and time with some interpolation functions. Using 
a time marching scheme and itegrating the discretized equation with special consideration on 
the evaluation of the singular integral, one obtain finally the system of linear algebraic equations 
which can be solved easily, for example, by the Gaussian elimination. In this study the equations 
are approximated by using constant values for each time step and linear interpolations in space. 
A restarting time marching scheme19 is adopted to take advantage of avoiding domain 
discretization when the initial temperature field is harmonic. 

A rectangular block under a thermal shock 
As a simple first example, a rectangular block under sudden heating is considered. The 

convection boundary condition is imposed on Г3, and the temperature on Г1 is elevated suddenly 
to 100°C and the others are insulated as shown in Figure 2. The initial temperature of the block 
is 0°C. The functionals to be considered here are defined as: 

Here Φ2 means the sum of heat extracted through the boundary Г3. The y-coordinate of design 
boundary Г3 is elected as the design variable. Fixing the end points of the design boundary Г3, 
we obtain the sensitivity formula of the functionals from (26) as follows: 

From (22)-(25) the boundary conditions of the adjoint systems are obtained. For numerical 
computation of the sensitivity, the problem is modelled using 44 linear elements as shown in 
Figure 3. The design boundary is represented with piecewise linear segments and the design 
variables chosen are the y-coordinate of the nodal points. The design velocity is generated linearly 
over neighbouring 4 elements as shown in Figure 3. The material constants are set to unity for 
convenience and the final time tF is set to 1 sec. The time increment is chosen as Δt = 0.001 sec. 
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Figure 4 shows the temperature history calculated using a BEM code along the boundary Г2 
and the results show excellent agreement with those obtained from the analytic solution in the 
text of Carslaw and Jaeger24. For comparison of the results of the sensitivity analysis with those 
of the finite difference method, we defined ∆Φ = Φm — Φi where Φm and Φi are the functional 
values at the modified and the initial design, respectively. The numerical results with 0.1% 
perturbation of a design variable at the initial configuration are listed in Tables 1 and 2 for the 
temperature and flux functional, respectively. Owing to the symmetric behaviour of the results, 
only 5 design variables are perturbed. Fairly good results are observed. The differences with 
those of FDM happen to be the same for all the design perturbation. In Figure 5 it is shown 
for the first design variable that they become smaller as smaller time steps are adopted. To know 
an asymptotic behaviour of sensitivity solutions with respect to time step, the Richardson 
extrapolation25 solutions using the two data on the right in Figure 5 with an assumption of 
O(Ar) error are obtained. The ratios of solutions of the present method to the finite differencing 
are 99.48% and 100.16% for Φ1 and Φ2, respectively. This shows convergence of the sensitivity 
solutions. 
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Table I Design sensitivity of Φ1 for the rectangular block problem 

Design var. 
No. 

1 
2 
3 
4 
5 

Φ1 
(× 104) 

0.222766 
0.222766 
0.222766 
0.222766 
0.222766 

ΔΦ 

-0.453213 
-0.453712 
-0.453834 
-0.453877 
-0.453888 

Φ' 

-0.444166 
-0.444098 
-0.444013 
-0.443966 
-0.443915 

× 100 

98.00 
97.88 
97.84 
97.82 
97.81 

Table 2 Design sensitivity of Φ2 for the rectangular block problem 

Design var. 
No. 

1 
2 
3 
4 
5 

Φ1 
(× 102) 

0.919832 
0.919832 
0.919832 
0.919832 
0.919832 

ΔΦ 
(× 10-1) 

-0.100046 
-0.100179 
-0.100214 
-0.100227 
-0.100231 

Φ' 
(× 10-2) 

-0.990285 
-0.990189 
-0.990063 
-0.989993 
-0.989971 

× 100 

98.98 
98.84 
98.79 
98.77 
98.77 

A plunger problem 
The plunger considered here is a two-dimensional model of a precisely shaped die, which 

forms the panel of a TV bulb from a block of molten glass. The inside surface of the plunger 
shown in Figure 6 is cooled by water. It is known26 that a primary factor affecting the surface 
quality of the product is the variation of temperature on the contacting surface with the workpiece. 
Hence the objective of this problem is to design a cooling boundary for minimizing the temperature 
variation along the cavity boundary, Г3. Thus the following performance functionals are 
considered, 

Φ3 = (T,s)2 dГdt (38) 

Φ4 = qdГdt (39) 

It is seen that the sensitivity formula derived previously cannot be applied directly to the 
functional Φ3 because the integrand contains temperature gradient instead of temperature. 
Therefore some additional work is necessary to treat the function Φ3. 

Take now the material derivative of (38) to obtain: 

where R(V) is a collection of terms which are explicit in terms of design velocity V as follows: 

R(V) = [2T,s(q(Vn,s + VsH) - T,kVk,s) + (T,s)2(Vk,k - Vi,jninj)] dГdt (41) 

The integral in (40) has instead of The following idea2 is used to substitute it by an 
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equivalent ∂ζ/∂T appearing in (24). It can be calculated by a weighted residual method as follows: 

where W is an arbitrary weighting function with C° continuity and λ ≡ ∂ζ/∂T. Now obtaining 
the equivalent λ from (42), the boundary conditions of the adjoint system for the functional Φ3 
are given as: 

Noting that the design velocity on the boundary Г3 is zero, the desired sensitivity formula for 
Φ3 is obtained as follows: 

A simplified geometry and boundary conditions of the plunger are depicted in Figure 6. Because 
of the symmetry, a half of the plunger is considered. It is not unrealistic to model the cooling 
boundary Г1 as a convection boundary and the cavity boundary Г3 as another convection 
boundary to simplify the problem. For numerical calculations k, K, h1, T1∞, h3 and T3∞ are 
27.52 × 10-3 W/mm°C, 12.03 mm2/sec, 3.15 × 10-4 W/mm2oC, 0°C, 2.88 × 10-4 W/mm2°C, 
1000°C, respectively. And the temperature at t = 0 and the final time of the functional are 0°C 
and 50 sec, respectively. Two cases of t0 for the functional Φ3 are tested; one with 0 sec and the 
other 40 sec. 

The initial design selected is shown in Figure 7. The design boundary Г1 is represented by 
the composite cubic splines with free end conditions at both ends of Г1 and two linear boundary 
elements are used in discretization of a spline segment. Nine -coordinates in Figure 7 which 
control the splines are selected as design variables. For the solutions of the primal and adjoint 
system, the model is discretized by 56 elements. Note that (42) should be solved before obtaining 
the solutions for the adjoint system. By using the same shape function for the weighting function, 
W, as that of boundary elements, an equivalent λ is calculated at every time step. The sensitivity 
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Table 3 Design sensitivity of Φ3 with t0 = 0 sec for the plunger problem (Δt = 1 sec, Δb = 0.01 mm) 

Design var. 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Φ1 
(× 105) 

0.208397 
0.208397 
0.208397 
0.208397 
0.208397 
0.208397 
0.208397 
0.208397 
0.208397 

ΔΦ 
(× 10-2) 

-17.3619 
-1.93948 
-0.570300 
-0.226555 
-0.306475 
-0.353653 
-0.329000 
-0.163643 

0.174278 

Φ' 
(× 10 - 2 ) 

-19.7019 
-2.01833 
-0.618541 
-0.254400 
-0.342355 
-0.391304 
-0.356145 
-0.174226 

0.209943 

× 100 

113.48 
104.07 
108.46 
112.29 
111.71 
110.65 
108.25 
106.47 
102.46 

Table 4 Design sensitivity of Φ3 with t0 = 0 sec for the plunger problem (Δt = 0.5 sec, Δb = 0.01 mm) 

Design var. 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Φ1 
(× 105) 

0.213446 
0.213446 
0.213446 
0.213446 
0.213446 
0.213446 
0.213446 
0.213446 
0.213446 

ΔΦ 
(× 10-2) 

-17.3701 
-1.88960 
-0.550800 
-0.209781 
-0.284895 
-0.326990 
-0.310749 
-0.173736 

0.145671 

Φ' 
(× 10-2) 

-18.9218 
-1.83053 
-0.558640 
-0.215984 
-0.296759 
-0.338933 
-0.315385 
-0.172094 

0.191650 

× 100 

108.93 
96.87 

101.42 
102.96 
104.16 
103.65 
101.49 
99.05 

131.50 

results with 0.01 mm perturbation of each design variable for the performance functionals defined 
by (38) and (39) are calculated for time steps 1 and 0.5 sec and are found all similar in trend 
and percentage difference to those shown in Tables 3 and 4. The notations are the same as in 
the previous example. Several time steps are tested for each functional and the results summarized 
in Figures 8 and 9. It is seen that the magnitude of time step has much influence on the numerical 
results. The Figures also show the converging trend of those by the finite differencing. 

SHAPE OPTIMIZATION AND DISCUSSIONS 

The plunger model described in the previous section is taken as a shape optimal design problem. 
The objective is to find the shape of the boundary Г1 of the plunger that gives the temperature 
distribution of the cavity boundary Г3 as uniform as possible under some design variable 
constraints. Thus, the shape optimization problem can be defined as follows. 

Find the shape of Г1 such that: 

where bi is the ith design variable, m is the number of design variables, and are lower and 
upper limits of the ith design variable, respectively. In this optimization formulation the functional 
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Φ4 defined in the previous section is not included as a constraint because the amount of heat 
extracted from molten material is considered not so critical to the surface quality. 

The optimization routine IDESIGN27 is used on a HP720 engineering workstation. The 
primal and the adjoint systems are analysed using the same model as shown in Figure 7. In this 
case the sensitivity is calculated with the cubic spline representation of Г1. On the design boundary 
from two to eight boundary elements are used on discretization of a spline segment in proportion 
to the distortion of the segment during the iterations. The model is discretized by 70 elements. 
The time step is chosen as At = 2 sec referring to Figures 8 and 9. With this time step which 
corresponds to 25 in the Figures, computational efficiency can be gained although the accuracy 
of sensitivity is somewhat limited. Figure 10 shows the initial design, the optimal shape obtained 
and the bounds of the design variables. It is seen that the first design variable reached the upper 
bound and the last 6 design variables are almost fixed due to small magnitude of these sensitivities 
in relative sense. The cost function has reduced in 2 iterations from 2.04 × 104 to 1.52 × 104 

(°C/mm)2 for the case with t0 = 0 sec, and from 5.65 × 103 to 3.72 × 103 for t0 = 40 sec, which 
show 25.6 and 34.2% decrease of the objective, respectively. Figure 11 shows the temperature 
responses of the initial and the final designs along the cavity boundary Г3 where the objective 
functional is defined. We can find the critical region at the corner zone and the peak temperature 
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there is not lowered much partially due to the tight design variable constraint. The general 
optimal shape conforms well with the intuition and current design. To be realistic, a 
three-dimensional model with a more realistic boundary conditions may be necessary and is a 
challenge for future work. 

CONCLUSIONS 

A procedure and resulting formula for the shape design sensitivity analysis of two-dimensional 
transient heat diffusion problems using the BIE formulation have been presented. It is based on 
the material derivative concept and the adjoint variable method. The Ionescu-Cazimir integral 
identity is introduced to correlate the primal system and the adjoint systems. The adjoint systems 
introduced are affected by the primal variables with a reverse sequence of time. The procedure 
of SDSA is illustrated through a rod example with analytic expressions. The accuracy of the 
proposed formulation is demonstrated through numerical implementation. The sensitivities are 
calculated for a rectangular block and a plunger problem and compared with those by the finite 
difference method, showing good agreement. Optimum shape is obtained for the plunger problem 
by applying the derived sensitivity formula to an iterative optimization algorithm. The 
applicability of the formulation is well shown with this non-trivial numerical example. 
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